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Period-Doubling Bifurcations and Chaotic Motion for 
a Parametrically Forced Pendulum 

John B. McLaughlin 1 
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A parametrically forced pendulum is studied numerically both with and without 
friction. In both cases, period-doubling sequences of bifurcation are found. In 
the dissipative case, the period-doubling sequence leads to strange attractors, 
while in the conservative case, the sequence is responsible for the destruction of 
stable zones. 
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1. I N T R O D U C T I O N  

Many papers dealing with strange attractors have appeared in the literature 
recently. However, many of the systems which have been studied have a 
somewhat tenuous connection with physical reality. In this paper, the onset 
of chaotic motion in a very simple, but real, physical system will be 
discussed. Specifically, a parametrically forced pendulum will be treated 
both with and without air friction. The same sequence of bifurcations can 
be seen in both cases as the external forcing is increased. 

In the system to be discussed, the appearance of strange attractors is 
preceded by an infinite sequence of period-doubling bifurcations. This is 
interesting in light of Feigenbaum's (1) discovery that such sequences have a 
universal character, at least for one-dimensional maps, as well as more 
recent work which suggests that the universality may extend to more 
complex systems. (1-4) Another interesting result to be reported is the fact 

Research funded by NSF Grant MCS-7826088. 
= Chemical Engineering Department, Clarkson College of Technology, Potsdam, New York. 

375 
0022-4715/81/0200-0389503.00/0 �9 1981 Plenum Publishing Corporation 



376 McLaughlin 

that this same sequence occurs even in the limit of no dissipation. At the 
end of the sequence, the frictionless pendulum wanders over a large region 
of the Poincar6 map. 

When dissipation is present, the sequence of bifurcations leads to the 
appearance of strange attractors. These attractors go through a process of 
coalescence of the type discussed by Simo (5) for Htnon 's  map. (6) For 
forces slightly beyond the period-doubling range, one finds strange attrac- 
tors in which the momentum of the pendulum does not change sign. After 
the process of coalescence, one has two distinct strange attractors, each of 
which consists of two pieces. Furthermore, each of the attractors is still 
associated with a definite sign of the momentum. Finally, when the force is 
increased further, the sign of the momentum begins to switch. This sign 
reversal occurs infrequently for forces which are slightly above the thresh- 
old, but becomes increasingly frequent as the force is increased. 

If one lets the dissipation become small, the thresholds for the period- 
doubling bifurcations decrease, but they converge to finite values. Thus, the 
period-doubling sequence also occurs in the conservative case. 

In the conservative case, one has a stochastic zone near tile separatrix 
of the unperturbed pendulum. This zone exists even for small forcing levels 
and is produced by homoclinic intersections between the stable and unsta- 
ble manifolds of the point of inverted equilibrium. For low forcing levels, 
one has stable periodic orbits surrounded by KAM surfaces inside the 
"separatrix." As the period-doubling sequence occurs, these stable regions 
become smaller and stochastic motion occupies a greater fraction of the 
Poincar6 map. 

2. THE SYSTEM 

Let us consider a parametrically forced pendulum described by 

d2, 
+ k - ~  + [a  + 2qcos(~2t)] sin4, = 0 (1) 

dt 2 

In Eq. (1), ~ is the angle measured from the direction of gravity, k 
represents the effect of air resistance, a is the square of the pendulum's 
natural frequency, q is proportional to the amplitude of the vertical motion 
of the point of support, (7) and ~ is the frequency of the vertical vibration, It 
is well known from the theory of Mathieu equations that the equilibrium 
point q~ = 0 becomes unstable for certain values of the parameters in Eq. 
(1). For example, if one takes k = 0 and ~2 = 2, there are resonance zones in 
the a-q plane starting at the points q = 0, a = n 2. Thus, for a = 1, f~ = 2, 
and k = 0, the equilibrium point q~ = 0 is unstable for arbitrarily small 
values of q. In the calculations to be reported in the following section, a = 1 
and f~ = 2. 
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Let us introduce the momentum of the pendulum so that Eq. (1) can 
be written as two first-order ODEs: 

dd?/ dt = p (2) 

d p / d t  = - kp  - [ 1 + 2q cos(2t) ]sin q, (3) 

in  Eqs. (2) and (3), the restriction to a = 1 and fl = 2 has been made. The 
Poincar6 map of the system is determined by plotting the values of q~ and p 
for t = mr, where n is a nonnegative integer. The equilibrium points of the 
pendulum show up as fixed points in the Poincar6 map at c) = 0, p = 0 and 
~, = + ~r, p = 0. The equilibrium point at + = + ~r, p = 0 is unstable at all 
the values of k and q for which computations are reported in the following 
sections. Indeed, the homoclinic intersections between the stable and unsta- 
ble manifolds of this point play an important role in the chaotic motion 
observed in both the conservative and dissipative cases. 

3. RESULTS 

When k is positive, q must exceed a certain threshold in order to 
destabilize the equilibrium point ff = 0. When k is small compared to unity, 
it is easily shown (7) that the threshold for parametric resonance is 

q = k (4) 

When q exceeds this threshold, finite-amplitude motion results. 
Let us first consider the case k = 0.2. A vibration having period 2~r 

bifurcates from the origin when q exceeds 0.2 and this vibration is the only 
stable solution up to q = 0.713 ___ 0.012. At this value of q, two distinct 
rotational motions having period ~r appear  (one clockwise and the other 
counterclockwise). Each of these periodic solutions goes through a period- 
doubling sequence of bifurcations as q is increased. The thresholds for 
solutions of period 2~r, 4~r, 8~r, 16~r, and 32~r are q = 0.7925 ___ 0.0025, 
0.984 +_ 0.010, 1.01975 + 0.00025, 1.03075 _ 0.00025, and 1.03275 + 
0.00025. Thus, 

q4 -- q2 _ 5.35 ___ 0.30 
q8 -- q4 

q8 -- q4 _-- 3.25 ___ 0.25 
ql6 -- q8 

ql6 -- qs = 5.6 ___ 1.0 
q32 -  ql6 

(5) 

It  therefore appears  possible that this sequence is described by the 
Feigenbaum constant ( 4 . 6 6 9 . . . ) .  
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The end result of the cascade of bifurcations is a pair of strange 
attractors�9 These attractors also go through a remarkable series of transi- 
tions as q is increased�9 At the lowest value of q for which strange attractors 
exist, the Poincar6 maps of the attractors seem to consist of Cantor sets of 
points. As q is increased, the different parts of the attractors coalesce and 
form larger pieces. For example, in Fig. 1, the strange attractor is seen to be 
composed of four distinct pieces for q = 1.036. In Fig. 2, these pieces have 
coalesced to form two large pieces for q = 1.0375. Simo (5) has observed this 
phenomenon in H6non's map (6) and explained the coalescence in terms of 
heteroclinic intersections between the stable and unstable manifolds of the 
periodic points which are created by the cascade of period-doubling bifur- 
cations. 

It should be noted that the attractors in Figs. 1 and 2 correspond to 
clockwise rotations (the sign of the momentum is negative). Thus, the 
number of rotations executed by the pendulum increases roughly linearly as 
a function of time. When q exceeds 1.045, the momentum of the pendulum 
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occasionally switches sign. When q is only slightly above this threshold, 
these reversals are infrequent. In fact, as q approaches 1.045 from above, 
the frequency of reversals appears to approach infinity. For example, for 
q - -  1.0455, a run was made for a total time of 500rr, and the momentum 
was positive between 91~r and 416~r. For q = 1.046, the longest interval 
between sign reversals was 193r For q - -  1.05, the longest interval was 
123~r, and for q = 1.1, the longest interval was 56~r. The effect of these sign 
reversals is to cause the net number  of rotations to increase more slowly as 
a function of time as q is increased. 

In Figs. 3 and 4, the Poincar6 map of the strange attractor is shown for 
q = 1.05 and 1.1. The strange attractor appears to be closely related to the 
unstable manifold of the fixed point q~ = or, p -- 0. A similar phenomenon 
has been observed by Holmes in a model of a periodically forced beam. (8) 
A reasonable explanation for the onset of rotation reversals would be that 
there is a heteroclinic intersection between the stable and unstable mani- 
folds of some of the periodic points corresponding to clockwise and 
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Fig. 3. q = 1.05, k = 0.2, ~0) = 0.3456, p(O) = 3.104, 200 points. 

counterclockwise rotations. This would form a bridge between the two 
distinct attractors which exist at lower values of q and allow reversals. 
Unfortunately, there are an infinite number  of periodic points in the 
Poincar6 map, and looking for such heteroclinic intersections would be 
difficult unless one had an intuitive guide as to which points are important. 

The strange attractor persists up to q = 1.58. From this point on, there 
are two stable solutions--clockwise and counterclockwise rotations having 
period 7r. Thus, the system reverts to periodicity at large q. Similar behavior 
has been found in the Lorenz model. (9-11) 

Let us consider what happens to the above sequence of phenomena as 
k is decreased. For example, if k = 0.05, period-2~r vibrations exist up to 
q = 0.64. Period-~r rotations first appear at 0.525 _+ 0.025. In the interval 
between 0.525 and 0.64, there are four distinct basins of attraction. 
Period-2~r rotations bifurcate from the period-r; rotations at q = 0.663 _+ 
0.012. The bifurcation points for period-4~r and -8rr rotations are 0.8405 __+ 
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0.0005 and 0.8713 _ 0.0012. Strange attractors with sign reversals exist for 
q -- 0.90 (and beyond). 

Two observations can be made at this point. First, even though the 
friction has been reduced by a factor of 4, the bifurcation points in the 
period-doubling sequence have been lowered by only 15%. This suggests 
(and we will show below) that, as the friction goes to zero, the bifurcation 
points converge to finite values (i.e., that the peri0d-doubling bifurcation 
sequence occurs for the measure-preserving case as well as the dissipative 
c a s e ) .  

The second observation is that, for k = 0.05, 

q 4  - -  q 2  = 5 . 8  ___ 0 . 8  (6) 
q 8 -  q4 

Comparing this value with the corresponding value in Eq. (5), it is seen that 
the ratio is fairly insensitive to the dissipation. 
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1.086, p(0) = 2.461,200 points. 

In  order to investigate the limit as k goes to zero, q was chosen to be 
0.85. When  k = 0.05, a pair of stable period-4~r rotations exist for this value 
of q. Using one of the points in the Poincar6 map as initial condition, the 
value of k was changed to 0.01. Another  4~r rotat ion resulted. The largest 
percentage change in any of the eight coordinates of the points in the 
Poincar6 map was 24%. One of the points in the Poincar6 map for the 
period-4~r rotation was then used as initial condit ion for a run with 
k = 0.005�9 Once again, a period-4~r rotation was found, and the largest 
percentage change in any of the eight coordinates was 1.8%. The Poincar6 
map for k = 0.005 is shown in Fig. 5. The initial condit ion for this run was 
one of the points of the period-4qr solution for k = 0.01. Nevertheless, the 
intersections of the orbit look almost  like four points in the plot. This 
demonstrates how little the period-4qr attractors change as k is lowered 
from 0.01 to 0.005. 

Finally, one of the points of the period-4~r solution for k = 0.005 was 
used as the initial condit ion for a run with k = 0. In  this case, the Poincar6 
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map is area preserving. The resulting plot is shown in Fig. 6. One can see 
an island chain consisting of four islands in the plot. The same initial data 
were used for a run with q -- 0.84, and the results are plotted in Fig. 7. It  is 
seen that one has an island chain consisting of two islands�9 This is 
consistent with the location of the bifurcation points for small but nonzero 
k. 

Let us now consider in more detail the behavior of the system when 
k = 0. For small values of q, one has a stable (elliptic) periodic vibration 
with period 2~r. This orbit is surrounded by K A M  surfaces, as one would 
expect on the basis of K A M  theory. (12'13) This stable zone is surrounded by 
a "fuzzy" separatrix as shown in Fig. 8 for q = 0.2. The finite thickness of 
the separatrix is produced by intersections between the stable and unstable 
manifolds of the fixed point q~ = p = 0. (14) The fixed point ~ = ~r, p = 0 also 
has a fuzzy separatrix as shown in Fig. 9 for q = 0.2. In between the inner 
and outer separatrices, One finds island chains as shown in Fig. 10. 

Just as in the dissipative case, a pair of period-~r rotational solutions 
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appears when one increases q. In Fig. 11, a K A M  surface surrounding a 
clockwise rotational solution of period or is shown for q = 0.6. As q is 
increased still further, a 2~r rotation bifurcates from each of these solutions. 
In Fig. 12, one can see an island chain consisting of two islands. The 
islands contain a counterclockwise period-20r rotation. 

It is worth pointing out that the stable area surrounding the periodic 
solutions decreases considerably as q is increased. This is apparent in Figs. 
6 and 12. The stable regions are surrounded by a large stochastic zone. 
Thus, one starts at around q = 0.6 with a pair of fairly large stable zones 
surrounding period-or solutions. These stable zones disintegrate into smaller 
and smaller pieces as a result of the period-doubling sequence of bifurca- 
tions. Eventually, one is left with a set of saddle points and no stable zones. 
Of course, other stable zones appear in other parts of the Poincar6 maps as 
q is increased, as is generally the case. ~ 15) Nevertheless, the destruction of a 
stable zone through period-doubling bifurcations is of interest in itself 
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because the phenomenon may very well carry over to other conservative 
systems. If this is true, then in these cases the onset of period doubling can 
be used as a more quantitative alternative to the "resonance overlap" 
criterion (~4'16) for the destruction of stable zones. 

4. CONCLUSION 

The results stated above demonstrate the existence of period-doubling 
sequences of bifurcations in a real mechanical system. The period doubling 
occurs in both the conservative and dissipative cases, and the periodic 
solutions which appear as the forcing is varied are continuous functions of 
the friction as the friction goes to zero. 

The period-doubling bifurcations cause the destruction of large stable 
zones in the conservative case, and the onset of period doubling in 
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conservative systems may  well prove to be a replacement for the resonance 
overlap criterion in many  systems. 

In  the dissipative case, several different kinds of strange attractors 
appear  as the driving force is increased. The first strange attractors to 
appear  have a definite sign of the momentum.  They also consist of several 
disjoint pieces which coalesce as the force is increased in a manner  
described in Ref. 5 for H6non 's  map.  Finally, a strange attractor appears in 
which the m o m e n t u m  reverses sign. This at tractor exists over a fairly large 
range of the driving force, but  is eventually replaced by periodic mot ion at 
large forces. 
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